When is every matrix over a division ring a sum of an idempotent and a nilpotent?
نویسندگان
چکیده
منابع مشابه
When is the ring of real measurable functions a hereditary ring?
Let $M(X, mathcal{A}, mu)$ be the ring of real-valued measurable functions on a measure space $(X, mathcal{A}, mu)$. In this paper, we characterize the maximal ideals in the rings of real measurable functions and as a consequence, we determine when $M(X, mathcal{A}, mu)$ is a hereditary ring.
متن کاملa comparison of linguistic and pragmatic knowledge: a case of iranian learners of english
در این تحقیق دانش زبانشناسی و کاربردشناسی زبان آموزان ایرانی در سطح بالای متوسط مقایسه شد. 50 دانش آموز با سابقه آموزشی مشابه از شش آموزشگاه زبان مختلف در دو آزمون دانش زبانشناسی و آزمون دانش گفتار شناسی زبان انگلیسی شرکت کردند که سوالات هر دو تست توسط محقق تهیه شده بود. همچنین در این تحقیق کارایی کتابهای آموزشی زبان در فراهم آوردن درون داد کافی برای زبان آموزان ایرانی به عنوان هدف جانبی تحقیق ...
15 صفحه اولAn Elementary Proof That Every Singular Matrix Is a Product of Idempotent Matrices
In this note we give an elementary proof of a theorem first proved by J. A. Erdos [3]. This theorem, which is the main result of [3], states that every noninvertible n × n matrix is a finite product of matrices M with the property that M = M . (These are known as idempotent matrices. Noninvertible matrices are also called singular matrices.) An alternative formulation of this result reads: ever...
متن کاملWhen every $P$-flat ideal is flat
In this paper, we study the class of rings in which every $P$-flat ideal is flat and which will be called $PFF$-rings. In particular, Von Neumann regular rings, hereditary rings, semi-hereditary ring, PID and arithmetical rings are examples of $PFF$-rings. In the context domain, this notion coincide with Pr"{u}fer domain. We provide necessary and sufficient conditions for...
متن کاملWhen is the numerical range of a nilpotent matrix circular?
The problem formulated in the title is investigated. The case of nilpotent matrices of size at most 4 allows a unitary treatment. The numerical range of a nilpotent matrix M of size at most 4 is circular if and only if the traces trM M and trM M are null. The situation becomes more complicated as soon as the size is 5. The conditions under which a 5 5 nilpotent matrix has circular numerical ran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2014
ISSN: 0024-3795
DOI: 10.1016/j.laa.2014.02.047