When is every matrix over a division ring a sum of an idempotent and a nilpotent?

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When is the ring of real measurable functions a hereditary ring?

‎Let $M(X‎, ‎mathcal{A}‎, ‎mu)$ be the ring of real-valued measurable functions‎ ‎on a measure space $(X‎, ‎mathcal{A}‎, ‎mu)$‎. ‎In this paper‎, ‎we characterize the maximal ideals in the rings of real measurable functions‎ ‎and as a consequence‎, ‎we determine when $M(X‎, ‎mathcal{A}‎, ‎mu)$ is a hereditary ring.

متن کامل

a comparison of linguistic and pragmatic knowledge: a case of iranian learners of english

در این تحقیق دانش زبانشناسی و کاربردشناسی زبان آموزان ایرانی در سطح بالای متوسط مقایسه شد. 50 دانش آموز با سابقه آموزشی مشابه از شش آموزشگاه زبان مختلف در دو آزمون دانش زبانشناسی و آزمون دانش گفتار شناسی زبان انگلیسی شرکت کردند که سوالات هر دو تست توسط محقق تهیه شده بود. همچنین در این تحقیق کارایی کتابهای آموزشی زبان در فراهم آوردن درون داد کافی برای زبان آموزان ایرانی به عنوان هدف جانبی تحقیق ...

15 صفحه اول

An Elementary Proof That Every Singular Matrix Is a Product of Idempotent Matrices

In this note we give an elementary proof of a theorem first proved by J. A. Erdos [3]. This theorem, which is the main result of [3], states that every noninvertible n × n matrix is a finite product of matrices M with the property that M = M . (These are known as idempotent matrices. Noninvertible matrices are also called singular matrices.) An alternative formulation of this result reads: ever...

متن کامل

When every $P$-flat ideal is flat

In this paper‎, ‎we study the class of rings in which every $P$-flat‎ ‎ideal is flat and which will be called $PFF$-rings‎. ‎In particular‎, ‎Von Neumann regular rings‎, ‎hereditary rings‎, ‎semi-hereditary ring‎, ‎PID and arithmetical rings are examples of $PFF$-rings‎. ‎In the context domain‎, ‎this notion coincide with‎ ‎Pr"{u}fer domain‎. ‎We provide necessary and sufficient conditions for‎...

متن کامل

When is the numerical range of a nilpotent matrix circular?

The problem formulated in the title is investigated. The case of nilpotent matrices of size at most 4 allows a unitary treatment. The numerical range of a nilpotent matrix M of size at most 4 is circular if and only if the traces trM M and trM M are null. The situation becomes more complicated as soon as the size is 5. The conditions under which a 5 5 nilpotent matrix has circular numerical ran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2014

ISSN: 0024-3795

DOI: 10.1016/j.laa.2014.02.047